
cREXX Progress
Update

The 34th Annual Rexx Symposium

Adrian Sutherland • 12.09.2022 (Final)

cREXX Progress
Update

cREXX Vision & Aims

cREXX Architecture

cREXX Level B MVP

10 Demos

How to Help?

Thanks!

cREXX Project Vision and Aims

The aim of this project is to have an up-to-date, high performance, very portable, business tool.

● Will be constructed from the ground up with a new lexer/parser, a new bytecode ‘assembler’ and

interpreter (and runtime). Parsing and translation will not be clause-based like the current

Rexx/370 but follow the modern tradition of upfront translation of a whole source program.

● Will be explicitly 64 bit, Unicode, Cloud Native, Leveraging modern hardware like GPUs

● Most of the runtime written in Rexx. Where necessary additional layers can be written in C or

other languages.

● One aspect of the project is to revisit the REXX language - what can be improved? And most

importantly how can it be improved while keeping the essence of REXX

● ooRexx is not in scope, although an Object Rexx in Rexx seems feasible

cREXX Architecture

Key
Subset REXX

Level
Superset

REXX Level

REXX Level B (Phase 0)

Base Subset REXX Language with features / grammar which are incompatible with REXX Level C.

Designed to be lightweight but with the required features to support cREXX components (e.g. Component 0 - End2end Controller), but unconstrained by existing REXX language specifications.
● Access to environment variables
● ADDRESS COMMAND
● A base set of low-level functions (via ASSEMBLE instruction)

It will have the object orientation and type safety as core features.

REXX Level C

Classic REXX

REXX Level D

A REXX Compatible with Classic REXX but
with additional features, e.g. USE

In Project Scope Scope TBC

REXX Level E

OOREXX

REXX Level F

A REXX Compatible with OOREXX but with
additional features (features TBC)

REXX Level L

A REXX Language for Computer Language
Engineering with advanced parsing, and
inbuilt support for language engineering
data structures

REXX Level G

A REXX Language for General Purpose
Use; in terms of scope this can be
considered to a modernised and unified
version of Classic and OO REXX. In sum,
an easy to use modern REXX.

Phases 0 to 2

Phase 3

REXX Internal
Representation

A. REXX
Source Code

1. REXX Parser

B. REXX
Abstract

Syntax Tree

2. REXX
Validator

C. REXX
Symbol Table

3. REXX
Optimiser

D. REXX
Assembler

Code

E. REXX
Bytecode

5. REXX
Assembler

8. REXX LLVM IR
Generator

LLVM Optimiser
and Assembler

6. REXX
Bytecode

Interpreter

4. REXX
Assembler
Generator

LLVM IR
Code

Run

Native Binary

7. REXX
Runtime Library

Key
cREXX Phase 0/1

Component
cREXX Phase 2

Component
External

Component

Standardised
Interface

Data

0. cREXX End2end Controller

REXX Internal
Representation

A. REXX
Source Code

1. REXX Parser

B. REXX
Abstract

Syntax Tree

2. REXX
Validator

C. REXX
Symbol Table

3. REXX
Optimiser

D. REXX
Assembler

Code

E. REXX
Bytecode

5. REXX
Assembler

8. REXX LLVM IR
Generator

LLVM Optimiser
and Assembler

6. REXX
Bytecode

Interpreter

4. REXX
Assembler
Generator

LLVM IR
Code

Run

Native Binary

7. REXX
Runtime Library

Key
Common across

REXX levels
Specific to a
REXX level

Platform Specific
Common across

REXX levels

0. cREXX End2end Controller

Key

1. REXX
Parser

2. REXX
Validator

3. REXX
Optimiser

5. REXX
Assembler

8. REXX
LLVM IR

Generator

6. REXX
Bytecode

Interpreter

4. REXX
Assembler
Generator

7. REXX
Runtime
Library

Component Mainly C
Implementation

0. cREXX
End2end

Controller

Phase 0

Phase 1

Phase 2

Phase 3

Mainly REXX
Implementation

RE2C &
Lemon

REXX
(Level B)

*REXX
(Level L)

*REXX
(Level L)

*REXX
(Level L)

*REXX
(Level L)

*REXX
(Level L)

C C C

* REXX Level L provides the required:
1. Extended PARSE to handle PEG Grammars
2. Native support of Language Engineering data structures (ASTs and Symbol Tables)

*REXX
(Level L)

REXX
(Level B)

C

RE2C,
Lemon, C

C

cREXX Level B MVP

Phase 0

XX

Proof of Concept

Goal: Sustainability

Prove architectural concepts
and the ability for the project
to deliver by creating a
modern REXX implementation

Phase 1

Classic REXX

Goal: Standards compliancy

Formalise the implementation
by creating a high quality,
stable, performantand
compliant Classic REXX

Phase 2

Native Performance

Goal: Native Binaries

Integrate to the LLVM
backend to allow optimised
native binaries for multiple
target operating systems

Phase 3

REXX Modernisation

Goal: Contemporary REXX

Re-imagine REXX for new
users and workloads, and with
contemporary language
features

Level B
MVP

cREXX Level B MVP
Implemented

1. Statically typed language
2. Rexx assembler (rxas) based
3. Compiler, Assembler, Interpreter, Debugger (WIP in REXX)
4. Windows, Mac, Linux, VM/370CE + all good C90 targets
5. Metadata (debugging, linking, introspection, interfacing)
6. UTF
7. PROCEDURE, IF, THEN, UNTIL, WHILE, FOREVER,

LEAVE, ITERATE, CALL, ARG, SAY, LOOP
8. ASSEMBLER (for low level functionality)
9. Runtime library including runtime “exits” (WIP)

10. Libraries (rxbin)
11. Libraries as “C-Arrays” and linking to standalone native exe’s
12. NAMESPACEs and IMPORTing
13. EXPOSE (Static Scoping)
14. EXPOSE across source files
15. Line Comments
16. Arrays
17. Address
18. Simple File IO

To Complete

1. PARSE
2. SELECT
3. Native Function Calling
4. SAA Interface (Level B) - To be implemented in REXX
5. Level B “System” Library
6. Exceptions (signals)

Will not include

1. Objects
2. Exceptions (with objects)
3. STEM Object (Implemented in REXX)
4. Inlining
5. Variable Pool (Level C)
6. LLVM
7. Full Runtime Library (Level C & G)
8. Math[s]

cREXX Level B Demos

10 (Decimal - not Binary) Demos

1. Setup and Hello World

2. Comment Options

3. Types and [Implicit] Declarations

4. Unicode, length(), centre & library REXX Implementation

5. Arrays

6. Address - and testing harness

7. Address REXX Implementation

8. File IO REXX Implementation (and global variables)

9. File IO - and Prime Numbers

10. File IO - and Counting Lines

René will cover creating a standalone exe in another session

How to Help?

● Github - https://github.com/adesutherland/CREXX

● Contact myself or René

● Fortnightly Evening Zoom meetings

● Code - Test - Use - Feedback - or just Lurk!

How to Help?

https://github.com/adesutherland/CREXX

Thanks to ...

René Jansen - Our PM; for all his encouragement and work
on the built in functions

Peter Jacob, Michael Beer, Mike Großmann, Bob Bolch and
everyone else who comes to our project meetings when they
should be having a beer!

Adrian Sutherland

● Journeyman Architect
● Keeps “hands-on” through numerous projects, from

Raspberry PI toys and Domain Specific Languages to
open architectural papers and other assets.

adrian@sutherlandonline.org

mailto:adrian@sutherlandonline.org

Questions

adrian@sutherlandonline.org
adrian.sutherland@endava.com

